×

usdttrc20是什么

usdttrc20是什么(usdt的trc20)

admin88 admin88 发表于2024-06-02 05:24:16 浏览70 评论0

抢沙发发表评论

  

  

  前言

  互联网时代usdttrc20是什么,技术usdttrc20是什么的进步usdttrc20是什么,文化的传播,自由的表达,让每一个个体都有了闪光的机会。形形色色的极客,各种 DIY,关注技术时尚,展示自己创意,也是新时代的赏心乐事。

  工业机器人,高自由度的机械手臂,明晃晃的高科技啊。拥有一台灵活控制的机械手,应该是极客们的幸福事情。

  

  现在机会来了,Dobot 团队开发了一款桌面型机械手,可以摆在书桌上,小巧玲珑,控制简单灵活。能做什么,就等usdttrc20是什么你开发了。

  开箱

  不多说,拆箱!看看全家福吧。

  

  不得不提是包装格外有创意,让人想起来千层饼。看到上图那厚厚的一摞泡沫塑料了吗?看看拆箱时的情景吧。

  给未出壳的机械手来个特写吧!机械手金属表面的处理很有质感。

  

  抓手设计的很巧妙,抓紧状态->电机旋转->松开状态->电机旋转->抓紧状态,这期间电机不需要反向旋转。

  

  很用心的设计,连接线上用标签扎线,既可以提示,又可以扎线。

  

  装配

  Dobot 配件有机械臂主体、电源线、控制器、USB 线、爪子和激光头等配件,机械臂由三个电机控制。

  

  控制器的每个接线都有标签,其中1号电机接 Stepper_R 电机,2号电机接 Stepper_L 电机,3号电机接 Stepper_rot 电机。

  

  Dobot 主体有三个臂可以运动,分别为图2-2中的1、2、3表示。其中1号臂由1号电机控制,2号臂由2号电机控制,3号臂由3号电机控制。

  为了获得当前机械臂的姿态,需要安装传感器,1号臂安装标签为 rear arm 的传感器,2号臂安装标签为 Forearm 的传感器(注意:由于2号臂较窄,需要拆卸2号臂才可以装入)

  

  控制器有两个接口,分别为 USB 接口和电源接口,插入电源和 USB 接口,则带有气泵功能的机械手臂安装完成。插好 Dobot 机械手上的电机、传感器连接控制器,然后通过 USB 与电脑相连。

  

  使用

  装配完成,接下来可以通电操作啦。没上电之前,机械手软软的,先让机械手摆放一个Pose,打开电源开关。控制器立刻接管机械手的控制权,机械手硬了。小伙伴千万要留意,通电后就不要强行转动机械手。

  下面让我们先在电脑上测试一下。去Dobot官网下载并安装驱动。驱动是Arduino驱动,Arduino可是非常流行的开源硬件,简单易上手,用过的都知道。安装件dobottools,拨动开关切换控制器为USB控制。

  

  运行DobotClient软件,Dobot服务器会自动运行。点击右上角的菜单,可以对Dobot进行配置,比如设置机械手末端是抓手、激光笔或者气泵。

  DobotClient示教功能提供两种控制模式:单关节点动和坐标轴点动。单关节点动模式直接控制机械手的关节转动,挖掘机就是这么开的。坐标轴点动模式控制机械手末端移动,由程序计算关节运动,这种模式更直观。接下来就可以控制机械手摆Pose了。

  

  使用再现功能可以重复你先前的操作,不过需要你记录下每一个关键动作。然后点击启动按钮就可以回放动作了。

  

  手机移动端提供了iOS和Android客户端控制软件,本次使用iOS端测试。下载安装Dobot App,运行之前要做好准备工作。把控制器切换至蓝牙控制,手机打开蓝牙开关,可以运行App了。

  Dobot App同样提供了两种控制模式:通过J1、J2、J3控制关节转动,或通过直接滑动机械手臂进行控制。

  

  通过设置再现点,可以重复执行先前动作。

  

  准备工作完成,先用气泵抓物体试试。抓硬币自然不再话下,拿游标卡尺来,没问题。找个茶叶盒,装上重物,再试试,重量291.8克。能力很强啊,继续测试,3.5寸硬盘有596克,真的抓不起来了。

  卸下气泵,换上抓手。看看效果, 今年是猴年,让我们看个抓猴子的视频吧。

  

  结构与控制

  机械手结构

  Dobot机械手结构简单,设计巧妙。通过大臂小臂上的连杆机构可以保证不论大臂小臂的角度如何变化,末端吸盘始终垂直于水平面。

  

  

  机械结构

  机械手控制模型

  对Dobot机械手的控制就是控制大臂、小臂和底盘的角度,转换为坐标系,以此实现对吸盘的定位。AO 、CD永远垂直于水平面。XYZ坐标系原点位于机械手固定底盘。

usdttrc20是什么(usdt的trc20)

  

  机械臂简图

  

  看起来这个机械手的控制还是非常简单的吗,只要有中学数学基础就可以理解了。

  编程控制

  API接口

  

  简单程序流程

  控制Dobot机械臂运动的简单流程。

  1)调用ConnectDobot连接机械手

  2)创建一个线程以固定间隔调用PeriodicTask函数

  3)设置大小臂的初始位置、超时时间、末端类型、示教/再现的静/动态参数。

  4)指令机械手移动到指定坐标(x,y,z)

  5)获取机械手姿态,检测是否移动到(x,y,z),未到达目标位置则跳转4

  6)读取下一个机械手要到达的坐标(x,y,z),跳转4

  简单的编程测试

  Dobot API动态链接库采用C++编码,支持C、C++、C#、java等语言的开发,需要使用DobotDll.dll动态链接库、DobotDll.h接口声明文件、DobotType.h数据结构定义文件,这些文件可以通过Dobot官网下载。

  生成lib文件

  在控制Dobot时还需要使用Dobot静态库,由于没有提到静态库,则需要通过DobotDll.h动态库生产静态库,需要以下几步:

  1)使用VS自带工具DUMPBIN将DLL中的导出函数表导出到(.DEF)文件。

  

  DEF转化

  2)将导出的(.DEF)文件整理为符合(.DEF)个数的函数导出文件。

  

  DEF修改

  3)使用VS自带的LIB工具将(.DEF)文件输出为VS格式的LIB文件。

  

  LIB生成

  编写代码

  使用VS 建立VC++控制台工程,编写C++代码。代码有点长,贴在这里有凑字数的嫌疑。哈哈,只贴个轮廓了,有需要代码的小伙伴请留言。

  

  程序测试

  我们编写的程序能够控制机械手按照输入的坐标连续运动。接下来让我们测试一下书法笔画图。书法笔笔头较软,即使Z轴方向有误差,也能顺利写字画图。卸下吸盘,拆开包装,装上书法笔。

  

  编程控制书法笔

  开机测试

  重复定位精度

  作为一款机械手,一个非常重要的指标就是末端位置重复定位精度(重复定位精度)。当机械手重复同一动作时,末端位置的偏差与这一指标有密切关系。Dobot给出的是0.2毫米。也就是说控制机械手反复执行同一个动作,位置偏差不超过0.2毫米。

  让我们看看重复性真的如此好吗?把机械手末端装上水笔,编程控制末端的坐标,反复画直线,画线过程是“中à右à中à左à中”,重复3次。

  

  使用游标卡尺测量测量一下图中蓝色标记的位置宽度。

  直线测量位置示意图

  左中、右中位置是笔不断往返的点,笔不会停顿,因此是测量重复精度的最好位置;(而中点是起点也是定位点,左、右点是停顿折返点,不适合)。考虑到水笔头部直径3mm以及墨水扩散的因素,可以推断重复精度小于0.4mm。

  哈哈,这个精度足够极客们在实验室High了。

笔头直径

0.3mm

线长

42.20mm

线宽(中)

2.08mm

线宽(左端)

0.71mm

线宽(右端)

0.70 mm

线宽(左中)

usdttrc20是什么(usdt的trc20)

0.40mm

线宽(右中)

0.44mm

  伸展范围

  让我们再测量一下机械手触及范围。以底座前缘为起点,测量机械手末端吸盘能触及最远与最近距离。

  

  伸展范围测量示意图

  当触及水平面时,吸盘能控制的最远距离278毫米,最近距离31.8mm。

  

  机械手控制范围测试(动画 最远距离)

  

  最近距离测试1(吸盘)

  

  最近距离测试2(吸盘)

  若允许吸盘高于水平面(高23.5mm),则距底座前缘最近距离为40.1mm。

  

  最近距离测试3(吸盘)

  

  最近距离测试4(吸盘)

  改装可行性

  极客总是不甘于墨守成规的,改造才是最有乐趣的事情。接下来让我们看看Dobot机械手的可改造性。

  机械改装

  Dobot机械手机械部分最方便改装的部分是末端。Dobot随箱送来许多末端配件,让我们先浏览下。配件主要包括抓手、激光笔、触摸笔、可转动的吸盘。当然也可以装配其它的东西,比如挂个布娃娃,带个面具之类的。

  

  机械手末端(空)

  

  末端用零配件

  电气改装

  Dobot控制器内部也有改造的余地。气泵、继电器都是可拆卸的。主控板上激光笔接口、抓手接口、控制吸盘转动电机接口、吸盘用气泵接口都可以改插其它模块,只要能搞清楚接口引脚定义、电气特性等。

  

  电气改造配图

  编程接口

  Dobot官网提供的开发文档包含DobotAPI文档、通讯协议、DobotDemo、DobotTools源码。

  

  开发文档内容图

  编程接口Dobot API包括DobotAPI.DLL动态连接库及C/C++头文件。

  l 提供Java、Python、WPF、JS等示例代码

  l 支持Windows操作系统

  l 支持C、C++、C#、Python、Java、JS等语言开发

  会C、C++、C#、Python、Java、JS等其中任何一门语言的小朋友,都可以编写代码随心所欲的控制机械手了。

  二次开发难度

  作为极客,自己打造的程序才有成就感。那么编程控制机械手,上手程度有多难?我花了半天时间,包括阅读文档、编程、调试等,能顺利控制机械手画矩形了。

  《插入视频:水笔画矩形.mp4》

  程序使用C语言编写,共137行代码。编程中用到了多线程,这个稍有难度。难度中等偏下,有一定编程经验且能独立编写100行以上程序的同学,努力一下都可以做到的。

  如果熟悉串口通信编程,还可以绕过DobotAPI,参考Dobot通信协议文档,直接编程操作串口,自由度更高,但难度有些偏高。Github网站有Dobot的开源代码,有兴趣的小伙伴可以到Github阅读(https://github.com/maxosprojects/open-dobot)。

  脑洞大开(有了机械手可以做什么?)

  装上激光器,结合人脸识别技术,控制机械手自动瞄准目标,配上声音“举起手来”,可以拍电影了。

  

  或者找个四轮移动平台,装上机械手,是吊车还是挖掘机还是什么东东,就看你的改装水平了。

  

  四轮移动机械手

  给机械手装上抓手,控制机械手甩动手臂,抛球,可以投篮了。给机械手带个面具,然后配上摄像头,装上音箱,给小朋友讲故事。或者两个机械手玩击剑,就看脑洞开的有多大了。

  体验总结

  Dobot这款桌面型机械手,的确是为桌面设计,体积小,不占空间。执行动作时非常安静,步进电机噪声小;唯独气泵电机的声音稍大,室内环境完全可以接受。Dobot机械手结构简单,控制参数少,容易上手。

  控制器的硬件接口也十分便捷,可以根据需要,增加相应的物理器材。外围连接方便。可以通过电脑使用USB进行控制,也可以通过蓝牙无线控制。不论是Android还是IOS都有可用App。

  Dobot提供了电脑及手机上的控制软件。特别值得一提的是,手机App操作最方便。GitHub上有Dobot开源代码,适合有意深入研究的同学。

  Dobot API支持多种语言开发,包括C、C++、C#、JAVA、Python。API接口函数少,学习简单,二次开发难度小。

  总的来说,连接方便、协议公开、快速开发、重复精度高,适用极客。

  最后提两点建议

  (1)控制器和机械手之间的连线有些凌乱,希望更清爽些了;

  (2)加强文档。我在编程时走了很多弯路,如果文档清晰,并适度讲解控制器内部结构,会更有利于二次开发。

  ---------------END----------------

  是不是很好很强大~想要看看这个机械臂的是怎么工作的吗?

  打开微信搜索并关注公众号:极果网

  公众号回复:机械臂

  比人手还灵活~

  

群贤毕至

访客